
N92-22 470

ADVANCES IN KNOWLEDGE-BASED SOFTWARE ENGINEERING

Walt Truszkowski
t

Head:, Automation Technology Section
Code 522.3

Goddard Space Flight Center
Greenbelt, MD 20771

ABSTRACT

The underlying hypothesis of the work reported on in this paper is that a rigorous and compre- hensive
software reuse methodology can bring about a more effective and efficient utilization of constrained
resources in the development of large-scale software systems by both the Government and industry. It is also
believed that correct use of this type of software engineering methodology can significantly contribute to the

higher levels of reliability that will be required of future operational systems.

This paper presents an overview and discussion of current research in the development and application of
two systems that support a rigorous reuse paradigm: the Knowledge-Based Software Engineering
Environment (KBSEE) and the Knowledge Acquisition for the Preservation of Tradeoffs and Underlying
Rationales (KAPTUR) systems. The paper concentrates on a presentation of operational scenarios which
highlight the major functional capabilities of the two systems.

THE KNOWLEDGE-BASED SOFTWARE ENGINEERING ENVIRONMENT (KBSEE)

The KBSEE (refs.1, 2) is one of the systems that is being used to substantiate the hypothesis stated above.
This system currently supports a comprehensive software specification reuse capability. A central concept for
the KBSEE is the concept of a domain. A domain, in our context, is any class of related objects. These
objects can be as diverse as cruise control systems for cars, elevator systems, or spacecraft command and
control systems (in fact all three of these domains have been used to demonstrate the functionality of the
KBSEE system to date). A high-level view of an end-to-end (reusable object definition to target system
specification) KBSEE scenario is as follows. A domain model is developed as part of an initial exercise in
populating the reuse knowledge base and, in an internal standard form, is stored in the KBSEE's reuse
repository. When the requirement for a new instance, or target system/application, of that model or portion
thereof arises, the KBSEE provides the software engineer with the capabilities to tailor the existing model to

meet the target application's requirements and constraints. The output from the current system is the
specification for the required target system. If, in the development of the specifications for the new target
system, some of the requirements or constraints cannot be met by the current domain model a feedback to
the domain modeling capabilities of the KBSEE allows the current model to be modified in order that the
new requirements or constraints may be reflected. This process thus allows the domain model to evolve to
a richer model. This phenomenon gives rise to the concept of an evolutionary domain life cycle. The Figure
1. graphically illustrates the major processes supporting the domain modeling and target system generation
stages of the KBSEE. Model-wise the KBSEE is highly object-oriented and there is a similarity in concept
between the tailoring of a domain model and the use of class definitions in arriving at instances of objects.

A major experiment has been conducted to better explore the applicability of the KBSEE in support of the
development of specifications for spacecraft control center software components. Based on an extensive
domain analysis of several control center software systems a generic control center software system model
was established. This model was used as the basis for the definition of reusable software specifications for

target applications in the control center environment. As depicted in the following two figures the KBSEE
provides two basic types of capabilities: creation of a domain specification and generation of target system
specifications.

/

406

Demala Requirements

Ummtl_ed Comtrmints

Unsatisfied Denudn

Requlremeut.

Tsrlet Sy.tem
Requirements

]_umble

Domain

Spedflcat/eu

Reuuble
Donudn
Architecture

Imp/ementst/on
of Donudn

Specific
Reusable

Components

Tarlpt System Retumble

Spedflcmtlm _Tar_. g_e_n _ Component
• . I)WI_m... Library
. •Generator. •

Tarlpt

System New
Comtrslnts Componmts

Um_d/sfled Requirements

Target System

D

Domain Modeling

Tm'lpt System Generation

Figure 1. Tae Evolutionary Domain Life Cycle Model

The Figure 2. illustrates the object-oriented domain model specification and reusable component generation

capabilities provided by the KBSEE. In the development of reusable objects in a domain of interest the

software engineer is provided capability by the KBSEE to develop domain component specifications in a

number of representations, namely:.

1. object communication diagrams which are hierarchically structured and show how objects

communicate with each other through the mechanism of message passing,

2. aggregation hierarchies which supports the decomposition of complex aggregate objects into

less complex objects eventually leading to simple objects at the leaves of the hierarchy,

3. generalization/specialization hierarchies which support the IS-A relationship and inheritance

relationships between classes and instance objects, and

4. state transition diagrams which reflect the fact that objects are sequential processes which

may be represented by finite state machines and documented by state transitions.

407

Once the specifications have been developed by the software engineer the multiple representations are
checked for consistency among themselves. If there are any inconsistencies these are brought to the
attention of the software engineer for corrective action. Once all the inputs are consistent they are
transformed into an internal format for storage in and later retrieval from the domain object repository.

M_ Vbmd_ Stm
Proof-of-Concept Experiment

Domain Modeling:
Creation of Domain Specification

Illak TramalUqmDlmlarau Detdled F--'ur_ObJect
Ob|ect Spas Rull

Figure 2. Creation of a Domain Specification and Reusable Components

The following Figure 3. depicts the major steps in the process of generating target system specifications using
the KBSEE. In many ways it is the reverse process of the domain modeling processes depicted in F'_qtre 2.

A typical scenario for this aspect of the KBSEE would be as follows. A software engineer would invoke the
KBSEE with a specific target system in mind. The KBSEE's knowledge elicitation component, KBRET,
would engage the software engineer in an interactive exchange during which time the requirements and
constraints for the target system would be made known to the KBSEE. This process currently involves the
engineer selecting from requirements and constraints currently supported by the appropriate domain model
in the KBSEE knowledge base of reusable objects. If the target system requires a feature not currently
satisfied by the domain model the KBSEE, through a feedback mechanism, allows the feature to be added to
the domain model through the processes depicted in Figure 2. Once all of the target system objects have
been defined the KBSEE, through its target system picture generator, creates the multiple views of the target
system specification which is the current output of the system.

4O8

Domain

Object

Repository

.,., ,

Proof.of-Concept Experiment

Target System Generation:

Generation of Target System Specification

I Multiple Views
of

Domain Spec

Multiple Views of
Target System Spec

TarlWI System

AIIgrelg.tien Hierarchy

Figure 3. Use of the KBSEE in Target System Specification Generation

As mentioned above, a major innovative feature in the KBSEE's support for target system specification is

depicted in the above f_,ure in the left-most circle. It is the Knowledge-Based Requirements Elicitation Tool
(KBRET) and a fuller discussion of this tool follows. This tool supports the development of target system

specifications by entering into an interactive session with the target system designer. During the session

KBRET eficits target system requirements by having the designer select desired features and object types

associated with the domain model. KBRET queries the object repository to obtain the knowledge required

for its reasoning in support of the target system specification generation process. Modern browsing
techniques are being used by KBRET to support this access.The Figure 4. illustrates the major components

of the KBRET tool. A major attempt has been made to ensure that the user's interface to the KBSEE

through the KBRET tool is as user accommodating as possible. An interesting and powerful aspect of the

KBRET architecture is the organization of its knowledge base. The KBRET knowledge base is divided into

domain dependent and domain independent portions. The domain independent portion support such

activities as browsing, the selection and/or deletion of target system features by the user, a check for

dependencies among selected features based on the domain model, and finally an invocation of the target

system generator process. All of these activities apply equally to any domain selected. The domain
dependent portion makes extensive use of the highly structures object-oriented reuse knowledge base and

provides the data and information required to support the domain-specific specification development process.

409

KBRET

KBRET Knowledge
Sources

Target SystemRequirements
Engineer

Domain Independent Knowledge Sources

cr SystemGeneratorDomainBrowser

Feature&Object
Selection/
Deletion

Domain Dependent
Knowledge Sources

It Fea and Inter-Feature& t I [
I I . ture Feature-Object [IMultiple Views I

I°__ "__; I !,_ " I

Inference

Engine

KBRET-Object Repository I--
Interface [_ r Target 1

System

L Specification

Object Repository

Knowledge Based Requirements Elicitation Tool (KBRET)

Figure 4. Component View of the KBRET Tool

410

ThepresentversionoftheKBSEEis implementedonaSunandutilizesSoftwarethroughPicturesasthe
multipleviewpointgraphicaleditor,Eiffelasthebasisfortheobjectrepository,CLIPS for the KBRET
knowledge elicitation component, and TAE + for the KBSEE graphical interfaces.

KNOWLEDGE ACQUISITION FOR THE PRESERVATION OF TRADEOFFS AND
UNDERLYING RATIONALES (K4dPTUR)

The KAPTUR system (ref. 3) shares many of the goals as the KBSEE. The KAPTUR system is intended
to support systematic reuse of knowledge and artifacts throughout the software development life-cycle. The
main contribution of KAPTUR is the support it provides for the evaluation of potentially reusable artifacts,
enabling the developer to make intelligent choices among the possibilities. KAPTUR is intended to provide
as much information as possible, in an easily accessible form, to help clarify whether a given artifact is
suitable for reuse in a given context.

KAPTUR is intended to preserve knowledge that is required or generated during the development process,
but that is often lost because it is contextual, i.e., it does not appear directly in the end-products of the
development process. Such knowledge includes issues that were raised during development, alternatives that
were considered, and the reasons that were used to choose one alternative over another. Contextual

information, in our sense, is usually only maintained as a memory in a developer's mind. As time passes,
the memories become more vague and individuals become unavailable, and eventually the knowledge is lost.
KAPTUR seeks to mitigate this process of information attrition by recording and organizing contextual
knowledge as it is generated. From the lessons learned from previous development efforts, current
developers can improve their insight into the problems at hand and their possible solutions.

The following Figure 5. illustrates the underlying operational philosophy of KAPTUR. Specifically it shows
how KAPTUR would be used to explore alternative software architectures for a control center application
processor. In the center of the diagram there is a knowledge base, called the Legacy, which contains
information about the application domain. In our case the application domain is control center software
systems. The information includes recommended architectures and information about previously developed
systems. In the scenario depicted in Figure 5. the developer has available a set of software requirements and
wants to begin defining an applications process to meet these requirements. The developer sits down at the
KAPTUR workstation and issues a command whose me_ is something like the following: "Iwant to
develop a control center applications process. Show me what they look like." In response the KAPTUR
system displays the recommended generic architecture (upper fight-hand box) as well as a stack of
alternative architectures related to this requirement. Upon examining the recommended architecture the
developer has the following options:

• examine the distinctive features of the recommended architecture,
• examine the alternatives by clicking on one of the windows behind the recommended

architecture,
• define a new architecture,
• accept the recommended architecture.

The distinctive features of an architecture are those that are different from common practice or the
recommended approach, or that represent a non-trivial decision about a significant issue. It is the prime
purpose of KAPTUR to preserve the knowledge and analysis of the decisions associated with the distinctive
features. Distinctive features may correspond to specific portions of an architecture (e.g., the interface
between two subsystems) or they may represent some aspect of the architecture as a whole (e.g., the
distribution of initialization functions to all subsystems of a system).

If the developer selects Distinctive Features, KAPTUR will list the distinctive features of the architecture
being displayed., and will allow the developer to select one or more of these features. KAPTUR will then

display a representation of the distinctive feature(s). In effect, the developer is afforded the opportunity to
zoom into a view of a particular feature of an architecture. This is illustrated in the bottom-middle box in
F_u'e 5.

411

ThedevelopercanthenexaminetheRationalesforthisfeature,i.e.,thereasoningunderlyingthedecision
that the feature represents. In the lower right-hand box in the Figure 5. the rationales are represented as a
list of object-oriented design criteria that might underlie the decision. From this screen the developer can
request even more detailed explanations by asking to view Trade-Offs that were considered in making the
decision. The developer can also ask to view Alternatives to this decision, i.e., other systems that do not
possess this feature because a different decision was made.

_,q_aJr_r

I

(

Bhdl_vo FM

_qpply Ratlonaie

F_lun_

?

4

(_ RA110NALE8 ._

J

i

J

(ACCEPT)

ObJe_
C_mrh

I.

2,

C ALTERNATIVES_'--

(_ TR.'I_E'OFF8)

/

KAPTUR my be uNd to explore alternaUveeoftwsre architectures

Figure 5. A Scenario View of the KAPTUR System

If the developer selects New (from either the Recommended Architecture or Alternative Architecture
screens) a graphical editor will be invoked to allow the interactive definition of a new architecture. The
definition of a new architecture need not start from scratch. A clipboard capability in KAPTUR allows the
developer to select portions of the recommended and/or alternative architectures for inclusion into the new
architecture.

Once a new architecture has been defined the developer will perform an analysis to determine the distinctive
features of the new architecture, i.e., the ways in which it significantly differs from the recommended
architecture. For each identified distinctive feature KAPTUR will prompt the developer to enter one or
more rationales justifying the feature. This is shown in the top-middle box in Figure 5.

412

The new architecture, together with its rationales, then become part of the Legacy of the domain and will
appear in the Alternatives list when KAPTUR is next used. This is how the evolution of domain
requirements and solutions is captured in the knowledge base.

The knowledge in KAPTUR is stratified into four layers as depicted in Figure 6. It is through this
multi-leveled knowledge base that KAPTUR is able to support the mechanisms for design knowledge
capture within a robust reuse environment.

Reusable Artifacts

/
/
/

Similarities & Differences

/

Rationales

Underlying Issues

Layers in KAWrUR's Knowledge Base

Figure 6. Structure of the Underlying Knowledge Base for KAPTUR

SUMMARY AND CONCLUSIONS

The two systems described in this paper have been developed over a period of three years to serve as
testbeds for the prototyping and evaluation of knowledge-based and advanced software engineering concepts
needed to support a rigorous software reuse paradigm. Among the major concepts studied have been those
associated with:

• representation of reusable software specifications
• consistency checking among various specification formalisms
• knowledge-based approaches for interactive requirements elicitation
• mechanisms for design knowledge capture
• hierarchical structuring of design knowledge
• knowledge-based browsing techniques
* user/system interaction
• object-orientod knowledge bases

413

Both of these systems are currently being used to focus on the issues associated with software reuse in the

context of spacecraft control center software system specifications. As NASA missions become more

complex, long-lived, and increasingly expensive the developmental and cost-savings benefits that can be

derived from a well formulated reuse methodology take on added significance. Especially for those programs

that have a long projected lifetime, the need for establishing and maintaining a "corporate memory" of
reusable components and system development rationales becomes critical for an effective sustaining

engineering activity. Over the next year both of these systems will be field-tested on real-time control center

software development projects to help in further evaluating their effectiveness in operational settings.

We feel strongly that the concepts embodied in systems like the KBSEE and KAPTUR have application in

any organization that is responsible for the timely and economic development of large software systems.
Additionally, any organization responsible for the sustained engineering of large systems over a long period

of time could profit from the design knowledge capture capabilities being investigated.

ACKNOWLEDGEMENTS

The KBSEE system was developed with major support from Dr. Hassan Gomaa, Dr. Larry Kerschberg, Dr.
Richard Fairley, Chris Bosch, Vijayan Sugumaran, Iraj Tavakoli, and Elizabeth O'Hara-Schettino of the

George mason University.

The KAPTUR system prototype was developed with major support from Dr. Sidney Bailin, Manju Bewtra,

and Dick Bentz from CTA, Inc. Mike Moore, formerly of CTA but now with NASA/Goddard, also

contributed to the KAPTUR development activity.

The success of the current systems is due to the creativity and hard work of these individuals.

REFERENCES

_. Gomaa, H., R. Fairley, L. Kerschberg, _An Evolutionary Domain Life Cycle for Software

Maintenance", Report for NASA, 1991

. Gomaa, H., L. Kerschberg, "An Evolutionary Domain Life Cycle for Domain Modeling and Target

System Generation', Report for NASA, 1991

. Bailin, S., R. Gattis, W. Truszkowski, "A Learning-Based Software Engineering Environment for

Reusing Design Knowledge", Report for NASA, 1991

Copies af these reports are available from Walt Truszkowski

414

